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In this work, a high precision algorithm is developed to determine the discrete 
spectrum of screened coulomb potential systems. The algorithm is mainly 
based upon the use of the perturbation of a hydrogen-like operator by a 
bounded operator. The Laguerre basis set expansion is employed in the 
procedure to obtain the operator inversion. Although a functional analytic 
analysis of errors and proof  of convergence theorem are still lacking, it appears, 
numerically, that the method rapidly converges for bounded screened coulomb 
poterrtial. Extremely accurate numerical results for the bound-state energies, 
in the case of Yukawa potential, are presented for illustrative purposes. 
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1. Introduction 

Perturbation theory is frequently used in many branches of physical and engineer- 
ing sciences. For treating several problems, it is possible to model a system so 
that a parameter, say e, whose small real values are interesting in many circum- 
stances naturally arises. Hence the problem generally becomes analytically solv- 
able by expanding all e-dependent entities in powers of e. Depending on the 
functional behaviour of the equations with respect to e, such series may or may 
not converge. There are notable references which give concrete ideas on perturba- 
tion theory, especially in the case of linear operators [1-5]. 

* Offprint requests to: H. Ta~eli 
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Screened coulomb potentials are of considerable importance in the mathematical 
modelling and understanding of the physical phenomena of many quantum 
chemical and quantum electrodynamic systems. Various works on the spectral 
investigation of these systems may be cited [6-16]. There is a general tendency 
in the perturbative treatment of the problems to use the screening parameter, say 
3,, as a natural perturbation parameter, except in Smith's work [17] and in our 
previous work [18]. Even if the total potential operator is bounded in the whole 
co-ordinate space and has a finite norm, the individual operators appearing in 
the expansion of potential with respect to powers of 3, are generally not bounded. 
hence the expansion of the Hamiltonian of the system in powers of 3' presents 
a divergent expansion. The divergency of the resulting perturbative series of 
energy and wave function is therefore not surprising on the contrary it must be 
expected. To cure divergent perturbational results Pad6 approximants can be 
employed [19-22]. 

If a series approximated by Pad6 approximants is of Stieltjes type, one can benefit 
from certain well-known theorems on the convergence of certain sequences in 
the Pad6 table and on the uniqueness of their limits [23]. Such a treatment was 
realized for the Yukawa case, and it was conjectured that the form of the 3,-series 
expansion was Stieltjes. Results for bound-state energies accurate to five digits 
were given by means of this argument [24]. However, in a very recent paper, by 
using multiple precision arithmetic to prevent error accumulations in the construc- 
tion of the Pad6 table, it has been shown that the perturbation series in powers 
of 3' for ls, 2s and 2p energy levels are not Stieltjes [25]. Indeed, it is very difficult 
to prove whether a series is Stieltjes or not unless an amenable integral representa- 
tion of its coefficients is available. Generally, numerical implementation of the 
positiveness of the determinants of first few upper left square blocks in the 
determinental representation of Pad6 approximants may not be sufficient to satisfy 
the general determinental conditions for Stieltjes series. Furthermore, the sensitiv- 
ity of the Pad6 table to error accumulations prevents one from increasing the 
order of Pad6 approximants arbitrarily, so that very high precision arithmetic 
should be used. In [25], results accurate to 20 digits for almost the entire regime 
of the screening parameter, in the cases of ls, 2s and 2p states were presented. 
There is, however, a considerable loss of accuracy for high screening values in 
the 2p state. 

All these discussions imply that the use of the naturally arising perturbation 
parameter, 3,, is not suitable for the spectral investigation of screened coulomb 
potential systems. This motivates us to insert a superfluous parameter, say e, into 
a convenient place in the operational form of the Hamiltonian. In our previous 
work [18], the first paper of this series, certain analytical evaluations up to 
third-order perturbative energies have been realized for the Yukawa case. In this 
work, we shall deal with central field screened coulomb potential systems and 
shall develop an algorithm for numerical implementation of the method to any 
desired order of perturbation. 

To obtain our original problem, the superfluous parameter, e, is replaced by unity 



Convergent perturbation studies in screened coulomb potential systems 41 

after the construction of the perturbative series. This kind of perturbation tech- 
nique is generally known as Neumann perturbation theory [26]. If the operator 
multiplied by e is bounded, or if its unboundedness is less than the unperturbed 
operator, the perturbation theory of linear operators dictates that e-power series 
converging in a non-empty circle around the origin of e-complex plane can be 
constructed. In particular, if the convergence radii of the series exceed unity then 
we can represent energy and wave function of the system without any trouble 
by putting e = 1. Although we shall not give a systematic investigation of the 
convergence radii of perturbative series, numerical results will be presented which 
support their convergence. 

In the frame of these introductory remarks, this paper contains five sections. In 
Sect. 2, a detailed presentation of our formalism is given. Section 3 covers the 
discussion on the role of an effective charge parameter inserted into the scheme 
for the acceleration of convergence. The fourth section includes the interpretation 
of numerical results and certain discussions about the convergence properties of 
the algorithm. The last section involves the conclusions, motivations for future 
applications and also the standardization and generalization of the proposed 
technique. 

2. Formulation of the algorithm 

Let us consider the following Schr6dinger equation: 

-�89 r - 1  V(yx )*= EW, * c  2~ (2.1) 
r 

where Y( is the Hilbert space of the problem, x stands for position vector, and 
r denotes the radial variable in spherical co-ordinates. In the equation, 7 charac- 
terizes the screening of the central force field by other electrically charged 
particles. It is clear that the amplitude of the screening may depend on the 
direction. We shall, however, omit the angle-dependence of the potential, V, for 
the sake of dealing with a system which can be investigated via ordinary differential 
equations. That is, we assume 

V= V(yr). (2.2) 

In fact, angle-dependency does not make important changes in the systematic 
construction of the perturbational algorithm, only an extra expansion is needed 
over spherical harmonics. However, the investigation of this rather generalized 
case is left for future studies, and, after the separation of variables, the radial 
form of (2.1) is taken as 

l d 2 ~  l d q r  [~ 1 1 ] 
2 dr 2 r dr ~ l ( l + l ) - - - - V ( y r )  W=EW,  (2.3) 1,2 r 

where l (=0, 1, 2 , . . . )  characterizes the angular dependence of the system in a 
global sense, and now, W is solely a function of r. The accompanying boundary 
conditions of (2.3) are the regularity, the continuity and the appropriately vanish- 
ing behaviour of W as r-+ co. Since our problem is defined on the Hilbert space, 
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or more specifically, on the space of the square integrable functions, the limitation 
of square integrability of  the ptoential, V, will result in certain advantages, 
especially on the convergence nature of  our algorithm. Moreover, we assume 
that V(0) = 1. This specification does not create any loss of generality due to the 
fact that a scaling transformation on r transforms any case, except V(0)= 0 to 
V(0) ---- 1. The case where V(0) = 0 removes the coulombic nature of  the potential 
in the vicinity of  the origin, that is, when r---~0. We, therefore, assume that 
V(0) r 0 in order to avoid this undesired case. 

By inserting the superfluous perturbation parameter,  e, the equation (2.3) takes 
the form 

1 dZF l dF  [~  ~ ~] 1 - V ( y r )  
2 dr 2 r dr + I ( I + 1 )  - F + e  r F = v F .  (2.4) 

It is, therefore, evident that we can obtain the solution of (2.3) in terms of F and 
v by letting ~ = 1, thus 

�9 (r) = F(r ,  e)l~_ 1 (2.5) 

E = v(e)[~=,. (2.6) 

The Hamiltonian of (2.4), which is self-adjoint provided that e remains on the 
real axis of e-complex plane, is formally written as 

H = Ho + e H h  (2.7) 

where 

l d  2 l d  1 1 1 
H 0 -  -- ( ] (2.S) 

2 d r  2 r d r ~ - 2 1 " t + l ' r  z r 

and 

1 
H 1 = -  [1 - V(yr)] .  (2.9) 

r 

One can observe that H has a discrete spectrum located on the negative real 
axis. In addition, its continuous spectrum covers the entire positive real axis in 
the v-complex plane. The Hamiltonian for hydrogen atom, H0, possesses the 
same type of spectrum as /4, except in the number  of  discrete states. Indeed, /4o 
has a countably infinite number  of discrete spectral points, whereas, as a result 
of the existence of screening, H has only a finite number  of  discrete states. Hence, 
as long as e changes from zero to unity, almost all of the discrete spectral points, 
except a finite number  of low-lying ones, have to merge into the continuous 
spectrum. The number  of surviving states is completely determined by the value 
of 3'. Of  course, the difference in the number  of states between H and Ho implies 
that a slowing down of convergence may be expected when 3' is close to a critical 
value where the discrete state under consideration does not survive anymore. 
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Now, we can develop a perturbative scheme based on the standard Rayleigh- 
Schr6dinger perturbation technique [2]. Let us consider the expansion of the 
energy and wave function 

co 

v= ~ #vj  (2.10a) 
j - 0  

F =  ~ eJFj(r). (2.10b) 
j=o  

If we use these expressions in (2.4), 

(Ho+ eH1)F = l,F, (2.11) 

and equate the coefficients of various powers of e on both sides of equality, we 
arrive at the recursion 

j - - 2  

( H o - v o I ) F j = ( z , , I - H O F j _ l +  • l,'j_kFk; j>-2 (2.12) 
k = 0  

with the initial equations 

( / 4o -  ~oI)fo = 0 

( Ho - ~'oI)Fa = ( v i i  - HI)Fo 

(2.13) 

(2.14) 

for the evaluation of u s and F~, where I stands for the unit operator of the operator 
space to which Ho and Hi belong. 

By making the co-ordinate transformation, 

x = 2 r / ( n + l + l ) ,  (2.15) 

the solution of the eigenvalue problem of the hydrogenic case, 

Houn = A,un, (2.16) 

is obtained where the discrete eigenfunctions and eigenvalues are 

u ' - ( n + l + l ) 2  ( n + 2 / + l ) !  x~e ~/2L2t+~(x) (2.17) 

a~,=-l/[2(n+l+l)2]; /, n=0,  1,2, . . .  (2.18) 

Lm(x) is the associated Laguerre function. Therefore, we can show that the 
solution of (2.13) is 

Uo = An (2.19) 

Fo = un. (2.20) 

The structure of/4o necessitates using r 2 as a weight function in the scalar products 
of the Hilbert space. The set of un's is an ortho-norm~il set under the weight r 2. 

Since a global normalization is always possible after obtaining the eigenfunctions, 
we can assume, without any loss of generality, that the normalization condition 

(Fj, Fo) = 30j; j = 0, 1, 2 , . . .  (2.21) 
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where ket and bra notation implies the scalar product and 6kj is Kronecker's 
delta, holds. This removes any arbitrariness from the solutions of the F/s.  

The self-adjointness of  the operator ( H o - u 0 I )  implies that the homogeneous 
solution and the right-hand side must be orthogonal both in (2.14) and in (2.12). 
Thus, in conjunction with (2.21), we obtain the relations 

vl = (Fo, HIFo) = (u,, HlU,, ) (2.22) 

j--2 

uj-k(Fo, Fk ) - (Fo ,  H I F j - , ) = 0 - - *  uj =(u, ,  H1Fj_,); j ~ 2  (2.23) 
k = 0  

to determine the coefficients of the energy series (2.10a). Here, the last equation 
involves (2.22) for j = 1, and it is not problematic to evaluate v~. However, in 
the cases where j >  1, first of all we have to find Fj in order to obtain Uj+l. This 
can be accomplished through the inversion of the operator ( H o -  VoI) on the 
complementary space of its null space spanned by u,'s. Fj's can then be obtained, 
from (2.12) and (2.14). Therefore, we should solve the inversion problem 

(Ho - VoI)f  = g (2.24) 

where it is assumed that 

( u , , f )  = (u,, g) = 0. (2.25) 

If ~ denotes the inverse of ( /4o-  VoI), the solution will be expressed in the form 

f =  ~-g. (2.26) 

A frequently used technique for finding ,~ is the utilization of the spectral 
decomposition of/40. This is possible, provided that the eigenfunction set of Ho 
is complete. However, the spectral structure of Ho implies that the decomposition 
of Ho into projection operators, which project a given function into a specified 
eigenspace of/40, can be expressed as an infinite sum over a countably infinite 
set of discrete eigenfunctions, in addition to an infinite sum over an uncountable 
infinite set of eigendistributions corresponding to the continuous spectrum. The 
analytical treatment of such sums creates many technical problems and necessi- 
tates the evaluation of certain integrals over confluent hypergeometric functions. 
However, since the spectral series converge very slowly, certain operators cannot 
be approximated by finite truncations. It is therefore preferable to seek an 
appropriate way of dealing with an operator which has solely discrete spectra 
with a complete eigenfunction set. This has been realized in our previous work 
[18], and Eq. (2.24) was converted to 

[ T - ( n  + l+  a)I] j  7= g (2.27) 

where 

d2 2 d + l ( t + l )  l+ �88  (2.28) 
T =- - x dx~ 5 - x 

f = f [ ( n + l + l ) x / 2 ] ,  ~ = � 8 9  (2.29) 
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The operator T is a very well-known operator, which arises in the theory of 
Laguerre polynomials, and has only a discrete spectrum with a complete set of 
eigenfunctions. Thus 

Tfbm = (m + l + l)c~,, 

~b, = [ ( rn+m!  q l / 2  2/-+ 1)!J e X/2x'L2mt+l(x) 

(4,~, r176 = 4,mr dx = am., 

and j7 can be represented by the linear combination of r that is, 

(2.30) 

oo 

~r= E s  
i=0  

(2.31) 

Therefore, the inverse of [ T - ( n  + l+  1)I], say :T, is established such that 

co 

f = ~ =  • 1 ~bm(&m, if). (2.32) 
m = 0  m - - Y /  
m ~ n  

Here, the relation between &a and o% is 

o~g = �89 (n + l + 1)25g(xg) (2.33) 

in terms of x. Finally, we show, from (2.12), that the coefficients, Fj, of the wave 
function (2.10b) for j---1 can be evaluated by the recursive formula 

j 1 
5 ( x ) = � 8 9  2 E 

k=O 
~ % k S ~ ( x F k ) - ( n + l + l ) ~ { [ 1 -  V(-~x)] Fj_1} , (2.34) 

where we have written ,~ for (n + I+ 1)y/2. 

Summation formulae for Laguerre functions and their products may be employed, 
in the case of some specific potentials, to obtain solutions in terms of elementary 
or special functions of mathematical analysis. Indeed, in the case of the Yukawa 
potential, where 

V(yr)  = e -vr, (2.35) 

analytical evaluations up to third-order perturbative contributions were accom- 
plished in the first paper of this series [18]. However, the analytical evaluations 
are not essentially necessary except for checking purposes and mathematical 
elegance. A more reasonable way is to develop an appropriate and readily 
accessible numerical algorithm in order to calculate Fj.and vj up to any desired 
order of perturbation. So we choose the M-dimensional subspace, say 5 ~ spanned 
by ~bj such that {&j: n - ml < j ~< n + m2, ml h- m 2 = M}. M is called the truncation 
order for the matrix representations of the related entities. It is possible to write 

5~ = c~ + W, (2.36) 
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where W is the one-dimensional subspace spanned by thn, i.e. the null space of 
the operator [ T - ( n  + l +  1)I], and the ( M -  1) dimensional space cr stands for 
its complement. If we consider the vector representation of Fj and denote its 
projection into S by fj, it is readily shown that 

{ c~, j >  0 

f ; c  N, j = 0  (2.37) 

where fj is now a vector of order (M - 1) i f j  > 0, and a scalar i f j  = 0. Furthermore, 
if we denote the matrix representations of  [1 - V(~x)], ~ and x on <g by A, B 
and X respectively, and the projections of x&n and (n + l+  1 ) [1 -  V(3~x)]&, into 

by the vectors u and v respectively, one can conclude that 

j - -1  

s  Z tZ j -kBXfk+lXjBu-BAs 1; j-->2 (2.38) 
k - 1  

f~ ~ IxlBu - By (2.39) 

where 

1 tzj = 5 (n + l + l )2vj. (2.40) 

We can finally reproduce, from (2.22) and (2.23), the coefficients of the energy 
series after some intermediate algebra as follows: 

m ~ ( n  + 1+ 1)2vrfj_l (2.41) 

i0 o /z, = � 8 8  1) 2 &~[1-  V(yx ) ]xdx .  (2.42) 

It should be noticed that the (M - 1) x (M - 1) matrices in (2.38) are symmetrical, 
and B and X are diagonal and tridiagonal matrices respectively. Consequently, 
/zj's and fj's can be recursively approximated up to a prescribed j value, say N, 
which is named as the order of perturbation. By treating with sufficiently large 
values of M and N is possible to get highly accurate numerical results. 

3. Use of the effective charge parameter 

In our formulation we used Ho as the Hamiltonian for the unperturbed hydrogen 
atom, and H1 as the perturbing operator. Since there is no adjustable parameter 
in the structure of either Ho or H1, it is not possible to affect the convergence 
rate of the perturbative series. Had there been a flexibility to adjust the compara- 
tive norm of Hi with respect to Ho, the desired accurate results could have been 
obtained fly expending less effort. For this purpose, we insert a dummy parameter 
into the operational form of the problem and hence replace /4o and HI by 

ITIo= H o + ( 1 - ~ ) / r  (3.1) 

/4, = H1 - (1 - ~')/r. (3.2) 

Here, ~ plays the same role as the atomic charge parameter of hydrogen-like 
systems, so it may be called the effective charge parameter. Even though it looks 
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as if the insertion of ~" destroys the boundedness of H1 when r=0,  the normed 
character of H1 does not alter due to the existence of the weight r 2. Oil the other 
hand, since the ~'-contributions of /4o and /41 cancel each other out in the 
evaluation of the perturbation series at e =  1, we have to point out that there is 
no real effect on the differential equation and on the limits of  the series. There 
is, however, no effect for the case where both truncation size M and the order 
of  perturbation N go to infinity. For finite values of  M, ~-dependence of the 
limits of  perturbation series becomes more important and more prominent,  
especially as 3/approaches its critical value, say ycr. This is due to the sensitivity 
of truncation errors to ~" and the slowing down of convergence for high screening. 
Here, ~" can be interpreted as an artificial screening factor which may, at least in 
part, share the role of  % We can therefore expect the value of ff to start from 
unity when y is zero, and to decrease as 3' increases to yc,.. However, the choice 
of best ~, which makes the perturbational series under consideration stable, is 
not a very easy task. I f  one carefully studies Tables 1-10, in which numerical 
results are presented, it is apparent  that values smaller than a half have not been 
used for ~" to avoid possible error accumulations in the calculation of elements 
of the matrix A, particularly where the truncation order M is quite large. 

Although there are such problematic aspects of using an effective charge para- 
meter, we can conclude that ~" can be employed to accelerate the convergence 
of the series. Indeed, if 3/ is not nearly zero and if M is sufficiently large, it is 
always possible to find a ~" value different from unity such that the desired accurate 
results for energy can be obtained by selecting an order of  perturbation which 
is less than when ~'= 1. Furthermore, one can test the accuracy of the limit of  the 
perturbational series by slightly increasing the size of  truncation, M, or systemati- 
cally changing the value of( .  Finally, we should also notice that upon transforming 
variable x to x/~,  14o and H1 are unaltered in form so that it is unnecessary to 
modify the formulation in Sect. 2. 

4. Discussions and numerical applications for Yukawa potential systems 

For numerical purposes, primarily, the matrices A, B and X can be constructed. 
Since the elements of  the diagonal matrix B and of the tridiagonal matrix X can 
be analytically determined by using certain properties of  Laguerre polynomials, 
there is no diff• in constructing them. On the other hand, if we consider the 
full matrix A, the definition of which is 

fo o Am,, = d)m(x)Q(x)qS, , (x)xdx (4.1) 

where we have Q ( x ) = [ 1 -  V('~x)], it is possible to attain a recursion relationship 
to calculate its elements. By using the expression of ~bn in Eq. (2.30) and the 
recurrence formulae for the Laguerre polynomials [27] we obtain the relationship 

1 
On - {xfbn+[(n+l)(n+21+2)]l/24),+1+[n(n+21+l)]l/2fb~_1}. (4.2) 

2 ( n + / + l )  
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Table 4. Cumulative perturbational energy eigenvalues for 3s state 

M. Demiralp et al. 

3' N ~" Energy 

0.01 17 1.0 -0.046 198 857 799 
0.02 22 0.95 -0.038 020 014 393 
0.03 30 0.9 -0.030 886 083 779 
0.04 34 0.85 -0.024 692 267 257 
0.05 47 0.8 -0.019 352 554 814 
0.06 59 0.75 -0.014 794 157 295 
0.07 65 0.725 -0.010 953 922 474 
0.08 109 0.7 -0.007 775 877 038 
0.09 205 0.725 -0.005 209 440 420 
0.10 400 0.75 -0.003 208 046 744 

033 191 519 298 258 968 
017 364 134 542 111 478 
974 481 232 731 547 628 
683 267 057 858 319 277 
752 342 295 397 996 789 
178 504 997 929 579 983 
898 051 105 461 938 169 
957 710 092 639 379 433 
383 781 109 197 435 239 
690 258 718 213 516 792 

Table 5. Cumulative perturbational energy eigenvalues for 3p state 

y N ~" Energy 

0.01 17 1.0 -0.046 
0.02 22 0.95 -0.037 
0.03 30 0.9 -0.030 
0.04 38 0.85 -0,024 
0.05 47 0.8 -0.018 
0.06 60 0.75 -0.013 
0.07 77 0.725 -0.009 
0.08 137 0,7 -0.006 
0.09 300 0.7 -0.003 
0.10 650 0.675 -0.001 

153 104 829 162 287 315 273 878 682 
852 389 200 223 176 326 568 017 591 
540 967 584 512 981 172 892 758 929 
132 353 610 390 802 462 032 068 924 
557 751 883 405 996 604 893 993 884 
761 345 303 506 408 408 115 349 158 
697 593 751 970 732 639 176 727 847 
329 995 439 268 113 269 338 178 286 
631 543 813 637 522 782 845 891 872 
589 001 525 867 560 267 558 634 940 

Table 6, Cumulative perturbational energy eigenvalues for 3d state 

3' N r Energy 

0.01 17 1.0 -0.046 
0.02 25 0.95 -0.037 
0.03 30 0.9 -0.029 
0.04 40 0,85 -0.022 
0.05 45 0,8 -0.016 
0.06 60 0.75 -0.011 
0.07 105 0.7 -0,007 
0.08 235 0.65 -0.003 

061 454 160 659 627 138 130 277 717 
515 127 700 686 930 313 438 432 490 
841 829 666 598 187 704 128 300 102 
987 856 759 885 760 676 935 559 909 
915 570 569 815 842 886 114 758 244 
601 829 474 162 576 042 503 968 775 
039 878 805 433 782 543 374 296 726 
248 360 428 751 993 572 467 525 047 

M u l t i p l y i n g  b y  qSm a n d  r e u s i n g  t h i s  i d e n t i t y  t o  e x p r e s s  X(Om i n  t e r m s  o f  (])m--I, ~brn 
a n d  fbm+~ w e  o b t a i n  t h e  t w o - d i m e n s i o n a l  r e c u r s i o n  r e l a t i o n s h i p  

2 ( n -  rn)qSmqSn =[(n+l)(n+21+l)]l/2(gmc~,+l+[n(n+21+l)]l/249,,(%_~ 

- [  ( m+ l )( rn+ 21+ 2 ) ]l/2qbm+lqS,-[ m( m+ 21+ l ) ]a/2 qSm_~4)n. 

(4 .3 )  
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Table 7. Cumulative perturbational energy eigenvalues for 4s state 

51 

y N ~" Energy 

0.01 25 1.0 
0.02 29 0.9 
0.025 37 0.85 
0.03 50 0.8 
0.04 72 0.75 
0.05 163 0.7 
0.06 550 0.7 

-0.022 356 120 521 237 134 526 537 480 368 
-0.015 379 266 427 896 141 378 328 766 000 
-0.012 503 238 318 007 071 505 739 698 432 
-0.009 992 038 197 871 687 950 471 313 673 
-0.005 958 084 497 576 461 475 241 796 902 
-0.003 091 659 900 161 321 484 658 950 292 
-0.001 236 719 097 035 032 773 917 445 475 

Table 8. Cumulative perturbational energy eigenvalues for 4p state 

y N ~" Energy 

0.01 25 1.0 
0.02 30 0.9 
0.025 40 0.85 
0.03 50 0.8 
0.04 80 0.75 
0.05 205 0.7 
0.06 650 0.625 

-0.022 313 420 741 967 189 431 061 748 014 
-0.015 233 805 356 103 025 211 040 276 736 
-0.012 294 320 436 313 933 670 168 893 845 
-0.009 716 695 159 602 488 892 977 681 790 
-0.005 556 019 078 689 840 613 671 502 405 
-0.002 598 058 852 571 853 965 261 191 255 
-0.000 729 172 766 636 200 572 968 574 

Table 9. Cumulative perturbational energy eigenvalues for 4d state 

y N ~ Energy 

0.01 25 1.0 
0.02 30 0.9 
0.025 40 0.85 
0.03 50 0.8 
0.04 85 0.7 
0.05 28O O.65 

-0.022 227 792 489 804 398 453 786 853 194 
-0.014 940 057 467 644 185 894 004 256 442 
-0.011 870 448 936 190 599 940 851 142 013 
-0.009 155 162 858 705 684 411 207 666 945 
-0.004 727 823 602 939 955 013 950 318 353 
-0.001 580 871 626 871 004 952 883 948 070 

Table 10. Cumulative perturbational energy eigenvalues for 4f state 

y N ~" Energy 

0.005 16 1.0 -0.026 
0.010 24 1.0 -0.022 
0.015 23 0.95 -0.018 
0.020 30 0.9 -0.014 
0.025 40 0.85 -0.011 
0.030 45 0.8 -0.008 
0.035 63 0.75 -0.005 
0.040 115 0.7 
0.045 260 ~.65 

468 096 084 105 162 944 667 005 790 
098 770 463 802 567 552 796 834 984 
113 729 630 539 752 961 409 742 799 
491 978 017 490 743 686 655 396 720 
218 210 790 350 454 862 863 561 467 
282 152 466 779 632 959 281 124 005 
678 737 573 824 696 847 170 265 471 

-0.003 409 544 912 277 651 176 630 332 167 
-0.001 487 359 743 334 720 048 551 730 070 
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Hence, we conclude that 

Am+a., =[ ( m+ l )( m+ 21+ 2 ) ]"/2{[ (n+ l )( n+ 21+ 2 ) ]l/ZAm,,+~ 

+[ n( n+ 21+ l ) ]l/2A . . . .  

- [  m(m+ 21+ l ) ]l/2Am_l,, + 2( m - n  ) Am,} ; m, n=0,  1 , 2 , . . . .  
(4.4) 

This implies that all rows of the matrix can be recursively obtained from its first 
row. It should also be noted that this property does not depend on the explicit 
form of the algebraic operator Q(x). That is, a knowledge of only 2M integrals 
over Q(x) is sufficient to progress through the presented algorithm for any 
screened coulomb potential. Depending on the analytical structure of the poten- 
tial, these integrals can be performed analytically or numerically. 

Now to take a particular case, consider the Yukawa potential for which 

V(Tr)=e -~r. (4.5) 

In this case, one can analytically evaluate all elements of the matrix A. However, 
in the computational sense, this causes a considerable increase in execution time. 
It is, therefore, preferable to employ the recurrence relationship (4.4). 

Numerical results in the case of Yukawa poential systems are presented for ls, 
2s, 3s, 4s; 2p, 3p, 4p; 3d, 4d and 4f states in Tables 1-10. Table 1 contains the 
results for ls state. The screening parameter % in the first column, has been 
varied over a great portion of its domain between zero and 7cr, The size of 
truncation M, the perturbation order N, and the value of the effective charge 
parameter ~" have been given in the second, third and fourth columns respectively. 
The last two columns are devoted to the presentation of our results corresponding 
to % M, N and ~" and also to Vrscay's results corresponding to y, for comparison. 
For all values of 7 from zero to one, extremely accurate results are obtained. 
However, as 7 approaches Ycr, the present method starts to lose its efficiency. 
This may possibly be due to the structure of 4~,-functions. Hence it is necessary 
to utilize high-order perturbations such as 650 for large screening parameters. In 
fact, it is well known that most of the methods used in such problems, where a 
composite spectrum appears, fail in the close neighbourhood of ycr. 

In the other tables, almost the same kind of presentation is used. In all states, 
results are obtained by systematically increasing 7. However, tables may not 
involve all values in the close vicinity of 7cr. M has been given only in Tables 1 
and 2, and only Tables 1-3 (for ls, 2s and 2p states) include a comparison with 
literature values, since there are no highly accurate results for other states to the 
authors' knowledge. We have to admit that our algorithm cannot achieve the 
power of Vrscay's method, which is mainly based on continued fractions and 
Pad6 approximations, for relatively high values of 3' for ls and 2s states. However, 
in our method a decreasing accuracy is not observed for excited states. 
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A VAX-780 is employed for numerical calculations, and programmes are executed 
in quadruple precision. I f  we recall the fact that in Vrscay's work a multiple 
precision arithmetic was used, and the accuracy of the results obtained was 
compared in each approximating step, the validity of the present algorithm 
becomes clearer. To give a rough idea about the time consumption we can say 
that a hundred-step perturbation with a size of  truncation of approximately 40 
consumes one CPU minute. To control numerical instabilities due to error 
accumulations, ~ and M are appropriately chosen. M can be estimated by 
comparing results with our previous analytical ones, setting ~" equal to one, and 
is considered to be sufficient whenever there is no discrepancy between both 
results. For a large variety of  3, in all states, it is observed that a truncation size 
of  30-40 and an order of  perturbation of 100-150 are sufficient to obtain the 
desired accuracy. 

The software is written in a machine-independent manner. It may, however, be 
improved by taking certain precautions for the unnecessary time and memory 
consumption. Work on the standardization of the algorithm and the removal of  
the slow convergence problem around the critical value of the screening parameter  
is under consideration. 

5. Conclusions and remarks 

In this work, we have presented a rapidly convergent perturbation algorithm for 
radially screened coulomb potential systems. The numerical results presented for 
the Yukawa case are the most accurate results for almost all states except a certain 
narrow 3,-domain around the critical value of the screening parameter  in ls and 
2s states, where the results given by Vrscay [25] are better. The method needs to 
be modified to speed up its slow convergence when 3' approaches 3,or. Investiga- 
tions to modify the basis set for relatively large 3, values are continuing. 

The algorithm presented in this work is sufficiently general in its structure, except 
for the limitation of the square integrability of  V(3,r). It can be extended to such 
screened coulomb potentials by altering the input data of  the matrix A. A 
functional analytical treatment of  the algorithm will reveal its convergence proper- 
ties and will possibly enable us to evaluate error estimates for a prescribed 
perturbation order and truncation size. 

The next step after the achievement of the items given in the previous paragraphs 
will be the generalization of this algorithm to angle-dependent potentials. Then 
it is very likely that we shall have a powerful tool to enter the realm of atoms 
and molecules. In other words, the investigation of atomic systems in the 
framework of these kind of approaches is our future goal. It is, however, clear 
that difficulties arising from the multi-dimensionality of  the systems and the 
singular structure of the potential will create many problems. Once we have the 
detailed analysis of  angle-dependent screened coulomb potential systems, we 
shall possibly be sufficiently encouraged to deal with these troublesome problems. 



54 M. Demiralp et al. 

References 

1. Kato T (1966) Perturbation theory for linear operators, Springer, Berlin Heidelberg New York 
2. Reed M, Simon B (1978) Methods of modern mathematical physics, vol. 4. Academic Press, New 

York London 
3. Chatelin F (1983) Spectral approximation of linear operators. Academic Press, New York 
4. Kramer HP (1957) Pacific J Math 7:1405 
5. Balslev E (1962) Math Scand 11:131 
6. Yukawa M (1835) Proc Phys Soc Jpn 17:48 
7. Foldy LL (1958) Phys Rev 111:1093 
8. Rogers FJ, Graboske HC, Harwood DJ (1970) Phys Rev A1:1577 
9. Pratt RH, Tsena HK (1972) Phys Rev A5:1063 

10. Barut AO (1972) Dynamical groups and generalized symmetries in quantum theory. University 
of Canterbury Publications, Christchurch, New Zealand 

11. Bednar M (1973) Ann Phys 75:305 
12. Rotenberg M (1970) Adv Atom Mol Phys 6:233 
13. Cizek J, Vrscay ER (1982) Int J Quantum Cbem 21:27 
14. Adams BG, Cizek J, Paldus J (1982) Int J Quantum Chem 21:153 
15. Gazeau JP, Maquet A (1979) Phys Rev A20:727 
16. McEnnan J, Kissel L, Pratt RH (1976) Phys Rev A13:532 
17. Smith CR (1964) Phys Rev 134:A1235 
18. Taseli H, Demiralp M (1987) Theor Chim Acta 71:315 
19. Dold A, Eckmann B (eds) (1981) Lect Notes vol 888. Springer, Berlin Heidelberg New York 
20. Dold A, Eckmann B (eds) (1984) Lect Notes Math vol 1071. Springer, Berlin Heidelberg New 

York Tokyo 
21. Baker GA (1965) Adv Theor Phys 1:1 
22. Baker GA, Gammel JL (eds) (1970) The Pad6 approximant in theoretical physics. Academic 

Press, New York London 
23. Baker GA (1975) Essentials of Pad6 approximants. Academic Press, New York London 
24. Lai CS (1981) Phys Rev 23:455 
25. Vrscay ER (1986) Phys Rev A33:1433 
26. Friedman B (1966) Principles and techniques of applied mathematics. Wiley, New York London 

Sydney 
27. Sneddon IN (1966) Special functions of mathematical physics and chemistry. Oliver and Boyd, 

Edinburgh 


